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Abstract We propose and demonstrate the incorporation

of porousmicrostructures on indium-doped zinc oxide (IZO)

electron selective layer in inverted organic photovoltaics

(OPV). Porosity was induced in the IZO layer with the

addition of polyethylene glycol (PEG) organic template at

the optimal IZO/PEG ratio of 4:1. When compared to the

OPV device with non-porous IZO, the device employing

porous IZO showed a 16 % improvement in current density

and a 13 % improvement in efficiency. This is primarily due

to the increased light scattering as substantiated by the haze

factor studies. This PEG assisted method of introducing

microporous structure is therefore shown to be compatible

with the doped interlayer and is thus a portable method of

enhancing light scattering in OPV devices.

Graphical Abstract
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1 Introduction

The ever increasing demand for renewable energy sources

to combat the ill-effects of conventional energy sources has

provided impetus to the scientific research on organic

photovoltaics (OPV). When compared to their inorganic

counterparts, OPV provides an inexpensive route to harvest

the solar energy with their inherent benefits of solution

processing, ease of fabrication and compatibility with

flexible substrates [1–6]. Efforts to improve the efficiency

of OPV with the ultimate aim of large-scale deployment

have resulted in single-cell OPV devices with an efficiency

of *9.2 % [7]. In addition to the previously reported

approaches including the use of additives and mixed
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solvents, novel structures, low bandgap polymers and

tandem cells [8–14], the modification of metal oxide

interlayers used in OPV is also an aspect that promises

substantial efficiency enhancement. Metal oxide interlay-

ers, which separate the OPV active layer from the elec-

trodes, are an integral part of OPVs. In addition to their role

as an optical spacer, metal oxide layers improve charge

extraction by facilitating the transport of only one type of

charge to the adjacent electrode, thus reducing recombi-

nation losses [5].

Inverted OPV architecture with the indium-doped tin

oxide as a cathode and a top silver (Ag) layer as an anode is

highly preferred. Inverted structures can help to overcome

some of the drawbacks associated with traditional architec-

ture, including the detrimental effect of poly(3,4-ethylene-

dioxythiophene)poly(styrenesulfonate)(PEDOT:PSS) inter-

layer on bulk hetero junction (BHJ) active layer and the use

of air-sensitive aluminum as cathode layer. In inverted

OPVs, n-type zinc oxide (ZnO) is used extensively as an

electron transport layer due to its inherent high electron

mobility and optical transparency in the visible region [15,

16]. In addition, the homogenous ZnO layer can be spin-

coated from ZnO sol–gel, which is a low-cost and facile

method when compared to other deposition options [17]. To

improve the electrical conductivity of the ZnO sol–gel layer,

various doping methods for ZnO have been previously

demonstrated [18–20]. The electrons from oxygen vacancies

and the zinc interstitial sites are the source of ZnO conduc-

tivity. Upon doping, substitution of the dopant ions at these

interstitial sites leads to the generation of free carriers thus

improving the electrical conductivity and lowering the

electrical resistivity of the film. Doped ZnO films have found

applications as photoconductors and sensor elements [18].

ZnO interlayers doped with aluminum [21], cesium [20] and

indium [22] have been demonstrated to enhance device

performance in OPVs. The increased conductivity of the

doped ZnO layer also reduces internal resistance in OPV

devices [20]. When compared to undoped ZnO, indium-

doped ZnO (IZO) shows lower resistivity and improved

transmittance without losing the aspect of solution process-

ing [22, 23].

Nanostructured metal oxide layers with nanopillar and

nanorod architectures have been widely demonstrated to

enhance the OPV device performance. This is achieved by

increasing the interfacial area between metal oxide and

active layer, thus providing better charge collection and

light trapping, and resulting in improved optical absorption

[23–26]. Porous metal oxide layers have also exhibited

these benefits in addition to providing an even surface

topography for uniform deposition of the subsequent lay-

ers. Uneven surface topography can encourage recombi-

nation and hence result in reduction in fill factor and device

efficiency [23]. ZnO porous layers have been reported to be

synthesized using various methods and have found myriad

applications including photocatalytic applications, antire-

flective coatings and gas sensing [27–32]. The use of

porous ZnO structure for fabrication of hybrid OPV with

ZnO and poly(3-hexylthiophene)(P3HT) has been demon-

strated with substantial improvement in all device param-

eters [33]. We have recently studied the impact of

incorporating a highly porous ZnO layer as an electron

selective layer in inverted OPV and found marked

improvement in efficiency when compared to inverted

OPV with non-porous ZnO layer [34]. It has been sug-

gested that ideal schemes to improve the OPV device

efficiency, through enhancement of incident light absorp-

tion, should be such that they work for a broad spectrum

and should be cheap and compatible with large-scale pro-

duction. It should also avoid surface contamination and

should not compromise the active layer quality [35]. The

porous microstructure created by utilizing environmentally

friendly polyethylene glycol (PEG) as a porosity-inducing

organic template is a facile and inexpensive method com-

patible with solution processing, and if proven to be

portable can be applied across a range of OPV interlayers.

With this in mind, in this paper, a porous-structured

indium-doped ZnO is demonstrated as an electron selective

layer for poly(3-hexylthiophene) and phenyl-C61-butyric

acid methyl ester (P3HT:PCBM) BHJ inverted organic

solar cell. Nanopores and nanotubes with pore sizes of

*10–20 nm are reported to result in polymer stacking

much different from the p–p stacking of the BHJ films

which has detrimental effects on device performance [36,

37]. Here, the porous IZO structure obtained by using PEG

has a larger pore size and can thus ensure that the infiltrated

active layer has the preferred film like properties. The

porous IZO layer acts as an efficient light-scattering layer,

enhancing the absorption over a broad range of spectrum,

and thus improves the performance of the OPV when

compared to the OPVs with non-porous IZO.

2 Experiments

The ZnO sol–gel was prepared by using the method

reported in the literature [38]. Zinc acetate dihydrate was

used as the precursor, and anhydrous ethanol as the solvent.

The precursor was added to the solvent, and the resultant

solution was refluxed for 2 h at 80 �C to form a milky

solution. A stabilizing agent, monoethanolamine (MEA),

was then added to obtain a clear solution, which was

magnetically stirred for 12–15 h at 60 �C to obtain the ZnO

sol–gel. The IZO sol–gel was obtained by adding indium

chloride as a doping source to the above-mentioned ZnO

sol–gel. The doping level can be precisely modulated by

controlling the amount of doping source. Indium doping
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was maintained at 1 at% as this doping level exhibited the

best performance in previous studies [22, 39]. Lower sheet

resistance and lower work function of IZO layer at this

doping concentration result in better charge collection,

thereby improving device performance compared to the

device with undoped ZnO electron selective layer [22]. The

as-prepared IZO sol–gel was used for fabrication of the

non-porous IZO reference OPV device. To make porous

IZO film, polyethylene glycol (PEG) was added to the as-

prepared IZO sol–gel and magnetically stirred for 2 h to

obtain a homogenous sol–gel before spin coating. PEG acts

as a template for supporting the doped zinc oxide and also

causes a phase separation between the solvent and adsor-

bed zinc oxide, hence facilitating the formation of the

desired porous structure [17]. Upon annealing, PEG was

decomposed and the porous structure was induced in the

IZO layer. The degree of porosity and pore size can be

varied by changing the ratio of IZO to PEG. The structures

of the OPV device fabricated for the current study (ITO/

IZO/P3HT:PCBM/Mo O3/Ag) are illustrated in Fig. 1. The

scanning electron microscopy (SEM) images of as-pre-

pared samples of both porous and non-porous IZO layers

are also shown in Fig. 1a, b, respectively. The micropore is

clearly visible in the porous IZO layer, while the non-

porous layer is featureless. For the porous and reference

(non-porous) structures, the substrate, hole selective layer,

active layer and silver electrode used were identical.

Indium-doped tin oxide on glass was used as the substrate.

MoO3 and silver deposited by thermal evaporation were

used as the hole selective layer and electrode, respectively.

A 1:1 ratio of P3HT/PCBM (40 mg/mL) in chlorobenzene

solvent was used as the active layer. The difference

between the structures therefore lies solely in the IZO

electron selective layer employed. For the reference

structure, ITO substrate was spin-coated with the as-pre-

pared IZO sol–gel, and for the porous structure, the PEG

added IZO sol–gel was spin-coated. Upon annealing, por-

ous IZO layer was obtained for the samples coated using

PEG containing IZO sol–gel due to successful removal of

PEG. For optimization studies, reference samples with IZO

sol–gel spin-coated at different speeds (2000, 2500 and

3000 rpm) and annealed at different temperatures (150,

200 and 250 �C) were used. Both non-porous reference

samples and porous samples were then subjected to an

identical processing protocol. Active layer was formed by

spin coating P3HT:PCBM, with a subsequent annealing at

100 �C for 10 min. Different active layer spin-coating

speeds (800–1000 and 2000 rpm) were used to study the

effect of active layer spin-coating speed on the device

performance. MoO3 hole selective layer was deposited

from an MoO3 source in the molecular chamber of thermal

evaporator. The pressure in the molecular chamber was

kept under 10-4 Pa, and 15 nm of MoO3 was deposited.

Seventy nanometers of silver electrode was then deposited

through a shadow mask in the metal chamber of the ther-

mal evaporator kept under 10-4 Pa. The final processing

step was post-anneal in N2 ambient at 160 �C for 10 min.

The current density–voltage (J–V) characterizations for

all the fabricated devices were performed under solar sim-

ulator using anAM1.5Gfilter calibrated to provide simulated

light intensity of 100mW/cm2. From the J–Vmeasurements,

vital device performance parameters, such as circuit voltage

(Voc), short circuit current (Isc), fill factor (FF) and efficiency

(g), were extracted. Incident photon-to-charge conversion

efficiency (IPCE) spectra were measured using a photo-

voltaic cell spectral response/external quantum efficiency

(EQE) measurement system employing a xenon light source

and triple-grating monochromator. Absorption/reflection

spectra and haze factor measurements were taken with a

PerkinElmer UV/Vis/NIR spectrophotometer system. The

spectrophotometer provides wavelength range from 175 to

3300 nm. An integrating sphere allows for high-precision

reflectance and scattered transmittance measurements.

3 Results and discussion

OPVs with indium-doped zinc oxide electron selective

layers spin-coated at various speeds and annealed at a

range of temperatures were analyzed. From these
Fig. 1 Schematic representation of OPV devices fabricated along

with SEM image of a porous IZO layer and b non-porous IZO layer
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optimization studies, IZO layer processed at a spin-coating

speed of 2500 rpm and annealing temperature of 150 �C
was found to exhibit the best performance (refer Appen-

dix). Hence, these processing conditions were maintained

for fabricating all IZO electron selective layers. Spinning

speeds of active layer also had to be optimized to ensure

efficient pore-filling. Inadequate pore-filling can hinder

optimal device performance due to the ill-effects of thicker

active layer produced at slower spinner speeds. Investiga-

tions proved that slower active layer spin speeds

(800–1000 rpm) resulted in the better performance of

porous IZO devices (refer Appendix). The effects of PEG

concentrations on the IZO layer were also studied. The

IZO/PEG ratios were varied from 2:1 to 6:1 to control the

porosity and pore size by varying the PEG concentrations

added to the as-prepared IZO sol–gel. For ratios below 3:1,

the pronounced PEG concentration causes undesirable

precipitation on the IZO layer, which reduces the wetta-

bility of the layer. The subsequent spin coating of the

active layer was thus adversely affected. On the other hand,

IZO/PEG ratios above 5:1 showed very low porosity and,

hence, the device performance was similar to that of

devices with non-porous IZO layer. Therefore, porosity

studies were confined to devices with IZO layer having

IZO/PEG ratios of 3:1, 4:1 and 5:1. The current density–

voltage (J–V) curves of the porous and non-porous IZO

devices are shown in Fig. 2. The extracted device param-

eters (Voc, Jsc, FF and g) are listed in Table 1.

From Fig. 2 and Table 1, it is evident that the IZO/PEG

ratio of 4:1 exhibited the optimum performance and was

used to fabricate porous IZO devices for the rest of the

investigations.

SEM images of the as-prepared IZO layer generated

with IZO sol–gels with IZO/PEG ratios of 3:1, 4:1 and 5:1

are shown in Fig. 3. The SEM images clearly show that

porosity is induced in the resultant spin-coated IZO layer

by adding PEG to the IZO sol–gel. The porosity and pore

size are affected by the IZO/PEG ratio. The porosity is

clearly visible and the pores are well defined at the IZO/

PEG ratio of 4:1.

Furthermore, the impact of porosity on device perfor-

mance was evident when the best-performing porous IZO

OPV device with IZO/PEG ratio of 4:1 was compared with

OPV device with non-porous IZO layer. The current den-

sity–voltage (J–V) curves of the porous and non-porous

IZO devices are shown in Fig. 4. The extracted device

parameters are listed in Table 2.

The OPV devices with porous IZO layer was found to be

as stable as the devices with non-porous ZnO layer

indicting that the incorporation of porosity to the IZO

electron selective layer has no noticeable detrimental effect

on the stability of the OPV devices.

The properties of porous structures which lead to

enhanced charge collection and light scattering improve the

Fig. 2 Current density–voltage (J–V) characteristics of OPVs with

IZO/PEG ratios of 3:1, 4:1 and 5:1

Table 1 Device parameters of OPV devices with IZO/PEG ratios of

3:1, 4:1 and 5:1

IZO/PEG ratio Voc (V) Jsc (mA/cm2) FF g (%)

3:1 0.585 -7.581 0.54 2.48

4:1 0.600 -9.436 0.54 3.07

5:1 0.601 -8.295 0.55 2.72

Fig. 3 SEM images of porous IZO layer with the IZO/PEG ratio of a 3:1, b 4:1 and c 5:1
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short circuit current density. Normalized incident photon-

to-current conversion efficiency spectra of the porous and

non-porous IZO electron selective layers of the devices are

presented in Fig. 5. Measurements were taken on com-

pleted OPV devices. The IPCE of the porous IZO device is

higher than that of the non-porous IZO device, and this is

in agreement with the aforementioned short circuit current

trend associated with these devices.

Absorption measurements taken on porous and non-

porous IZO layers are shown in Fig. 6. Samples with the

porous and non-porous IZO layers were prepared and the

P3HT:PCBM BHJ active layer was spin-coated on these

samples for absorption measurements. As seen in Fig. 6,

porous IZO structure with IZO/PEG ratio of 4:1 shows

higher absorption when compared to the sample with non-

porous IZO layer. It needs to be noted that OPV devices

employing ZnO nanopillars and nanorods can also lead to

increased incident light absorption by the scattering pro-

vided by the nanostructures. However, the enhanced per-

formance of such OPV devices is mainly credited to better

charge collection provided by the ZnO nanopillar and

nanorods [23]. These nanostructures act as antennas for the

collection of dissociated electrons and provide a direct

transport path to the electrode [24]. Unlike ZnO nanopil-

lar/nanorod structures, the increased absorption exhibited

by porous IZO layer can be attributed to the improved light

scattering provided by the porous structure. To verify this

claim, haze factor studies were carried out on the porous

and non-porous samples.

A textured conductive oxide layer can scatter light

effectively, and haze factor studies have been shown to

quantify this scattering [40]. The total and diffuse trans-

mittance of porous and non-porous IZO-coated ITO films

were measured using PerkinElmer UV/Vis/NIR spec-

trophotometer system. The haze factors of the films, which

are calculated as the ratio of diffuse transmittance to total

transmittance, are shown in Fig. 7. Haze factor was found

to be higher for the sample with IZO/PEG ratio of 4:1,

indicating higher light scattering in porous samples. The

porous structure thus scatters the incident light, increasing

the optical path length. This efficient light scattering

manifests itself as increased absorption in the BHJ active

Fig. 4 Current density–voltage (J–V) characteristics of OPVs with

porous and non-porous IZO electron selective layer

Table 2 Device parameters of OPV devices with porous IZO and

non-porous IZO electron selective layer

Voc (V) Jsc (mA/cm2) FF g (%)

IZO porous 0.600 -9.436 0.54 3.07

IZO non-porous 0.603 -8.149 0.55 2.72

Fig. 5 Normalized IPCE spectra of OPVs with porous IZO and non-

porous IZO (reference) layer

Fig. 6 Absorption spectra of OPVs with porous IZO and non-porous

IZO (reference) layer
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layer as seen in Fig. 7 thus justifying the claim of porous

structure acting as efficient centers of light scattering.

The efficiency of OPV devices are heavily influenced by

the type and quality of the interlayers used. The nature of

the interlayer not only affects the energy level alignment,

but also the active layer morphology, recombination,

charge collection efficiency and device stability [15, 36,

41]. It needs to be noted that although there is an increase

in the performance of OPV device with a porous IZO layer

when compared to an OPV device with non-porous IZO

layer, this percentage of increase is less compared to the

results of a previous study involving porous ZnO layer

[34]. Upon comparison of SEM images of the porous IZO

and our previous report on porous ZnO, it can be observed

that the porosity is higher for porous ZnO layer (refer

Appendix). This higher porosity will lead to better scat-

tering and hence higher absorption. Consequently, the

enhancement in current and efficiency of OPV devices with

porous ZnO is higher compared to OPV devices employing

porous IZO layer. Furthermore, contact angle studies were

performed using video contact analyzer to determine the

wettability and adhesion properties of the porous IZO thin

films. Smaller contact angles are indicative of better wet-

tability and adhesion [42, 43]. Porous IZO had a contact

angle of 68.8�. In previous studies, porous ZnO was found

to have a contact angle of 59.4� [34]. The lower wettability
of porous IZO indicates that the consequent spin coating of

active layer will be affected. The wettability of the inter-

layer affects the active layer film morphology and this in

turn has an impact on the absorption, charge dissociation

and transport, and thus on the efficiency of the fabricated

devices [15]. However, it is evident that the OPV device

employing the porous IZO layer demonstrates better device

efficiency when compared to its non-porous counterpart.

Thus, it has been proven that, irrespective of the metal

oxide interlayer used, such microporous architecture

improves OPV device performance when compared to the

respective non-porous interlayer thus making it a facile and

portable light-scattering enhancer.

4 Conclusion

We have thus shown that increased light scattering in the

porous IZO device leads to improved light trapping and

hence absorption by virtue of the porous nature of the IZO

electron selective layer. These OPV devices employing

porous IZO exhibit improved current density and hence

efficiency when compared to the reference OPV devices

with non-porous IZO. Haze factor studies together with the

rest of the characterization results substantiate the critical

role of porous IZO as an efficient light-scattering layer in

such device architectures.

Together with our previous report on OPV devices with

porous ZnO, the current study also demonstrates the porta-

bility of this facile and roll-to-roll compatible method of

inducing porosity using PEG in a different OPV interlayer

material. Initial studies in our laboratory on using similar

microporous skeletons on MoO3 hole selective layer of

standard OPV have also shown promising results, further

corroborating the portability of porous microstructure

architecture across different metal oxides and OPV device

architectures. Hence, though the amount of efficiency

improvement achieved may vary between OPV’s with dif-

ferent metal oxide interlayers, introducing porosity in the

OPV interlayer is a guaranteed method of light-scattering

improvement in OPVs and can also be used in conjunction

with other device performance improvement approaches.
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Appendix

OPVs with IZO electron selective layers spin-coated at

various speeds and annealed at a range of temperatures

were analyzed (Tables 3, 4).

From these optimization studies, IZO layer processed at

spin-coating speed of 2500 rpm and annealing temperature

of 150 �C was found to exhibit the best performance.

Investigations proved that slower active layer spin speeds

(800–1000 rpm) resulted in the better performance of

porous IZO devices (Table 5).

Fig. 7 Haze factor of OPVs with porous IZO and non-porous IZO

(reference) layer
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SEM images of porous ZnO from our previous studies

(Fig. 8) [34]. The degree of porosity for porous ZnO with

ZnO/PEG ratio of 4:1 is higher when compared with por-

ous IZO with IZO/PEG ratio of 4:1(Fig. 3b).
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