IMPLEMENTATION OF HIGH QUALITY-FACTOR ON-CHIP TUNED MICROWAVE RESONATORS AT 7 GHz

Rohat Melik1,2 and Hilmi Volkan Demir1,2
1 Department of Electrical and Electronics Engineering, Nanotechnology Research Center, and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
2 Department of Physics, Nanotechnology Research Center, and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey; Corresponding author: volkan@bilkent.edu.tr

Received 20 June 2008

ABSTRACT: We report on the design, analytical modeling, numerical simulation, fabrication, and experimental characterization of chip-scale microwave resonators that exhibit high quality-factors (Q-factors) in the microwave frequency range. We demonstrate high Q-factors by tuning these microwave resonators with the film capacitance of their LC tank circuits rather than the conventional approach of using external capacitors for tuning. Our chip-scale resonator design further minimizes energy losses and reduces the effect of skin depth leading to high Q-factors even for significantly reduced device areas. Using our new design methodology, we observe that despite the higher resonance frequency and smaller chip size, the Q-factor is improved compared with the previous literature using traditional approaches. For our 540 μm × 540 μm resonator chip, we theoretically compute a Q-factor of 52.40 at the calculated resonance frequency of 6.70 GHz and experimentally demonstrate a Q-factor of 47.10 at the measured resonance frequency of 6.97 GHz. We thus achieve optimal design for microwave resonators with the highest Q-factor in the smallest space for operation at 6.97 GHz. © 2008 Wiley Periodicals, Inc. Microwave Opt Technol Lett 51: 497–501, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.24103

Key words: microwave; resonators; quality-factor; tuning; fabrication

1. INTRODUCTION

High quality-factor (Q-factor) resonators are required for good performance in applications such as microwave devices, mobile phones, radars, wireless universal serial buses (USB), and wireless local area networks (WLAN). In such applications, on-chip resonators are preferred because they reduce power consumption, prevent connection losses, and facilitate on-chip integration. These lead to compact, low-cost systems. However, it is difficult to produce chip-scale, small-size resonators that exhibit high Q-factors at high frequencies. In general, smaller resonators yield lower Q-factors. To date, microwave resonators based on on-chip spiral coils have been successfully demonstrated, with unloaded Q-factors of inductors up to a maximum of 40 at 5 GHz [1] and 50 at 2 GHz [2], which would further be reduced for operation at higher frequencies [1, 2]. In these studies, to realize resonators using these inductors, external capacitors are used to tune the inductors, which undesirably increase the effective device area and decrease the resonator Q-factor. The use of such an externally connected capacitor further results in longer propagation times and fewer operating channels for communication. It has also previously been shown that higher Q-factors can be achieved using cavity geometries. But this then comes at the cost of significantly increased size, resulting in much larger chips (as long as several millimeters on one side) [3] and in more complicated fabrication steps. Therefore, these are not ideal methods to obtain a compact and high Q-factor microwave resonator operating at a high frequency. In addition to the need for a high-frequency, high-Q resonator, there is a strong demand for bio-implant resonators in medical applications that would satisfy the biocompatibility constraints [4]. In this work, with the motivation to address the need for compact high-Q bioimplantable microwave resonators, we develop and demonstrate on-chip biocompatible resonators with high Q-factors of about 50 in the microwave frequency range, despite their chip-scale, small size (sub-millimeter on one side).

In the literature, Q-factors are typically stated in unloaded cases, excluding the external loading effects [5, 6]. In this article, we report the measured Q-factors including the loading effects and the associated losses instead of merely citing unloaded Q-factors. Thus, we present the worst case Q-factor values, with the probe loading and related losses all included. Furthermore, we implement the resonator aiming for a minimal device size while operating with a high Q-factor at a high frequency. To do so, we develop a new design methodology that reduces the effect of skin depth in attaining high Q-factors. In our device, although the metal layer is very thin, we can achieve high Q-factors because of our new design approach. The area of our microwave resonator is demonstrated to be as small as 540 μm × 540 μm while the Q-factor is still kept high at 47.10, which is not possible with previous approaches in the literature.

The resonator architecture is based on a spiral coil structure with a few turns tuned with the on-chip capacitance to obtain the highest Q-factor from the smallest lateral chip size. This approach relies on minimizing energy losses in the coil and also on using the film capacitance for tuning. We develop a two-port circuit model design for our on-chip coil. We support our analytical model with numerical simulations. Our analytical model obtains targeted resonance frequencies that are very close to the resonance frequencies we obtained with numerical simulations and those that are later measured experimentally on our fabricated chips.

Although we implement our resonator chips using a standard microelectro-mechanical-systems (MEMS) fabrication procedure, we design them to be compatible with complementary metal oxide semiconductor (CMOS) processing, while also using only biocompatible materials. Our resonators are of a size (a half millimeter by a half millimeter with 100 nm thick metal lines) to possibly be fabricated in large quantities, at a low per-unit cost, by standard CMOS processes and conveniently be integrated on-chip with CMOS electronics.

In this article, we present the design, analytical modeling, numerical simulation, fabrication, and experimental characterization of such compact high-Q microwave resonators. The rest of this article is organized accordingly as follows. We first present the theoretical background in Section 2 and then describe the microfabrication of our on-chip resonators and their experimental characterization along with our theoretical analysis in Section 3 and finally conclude in Section 4.

2. THEORETICAL BACKGROUND

We develop our circuit model for a spiral coil starting with the circuit model of a general transmission line [7]. We consider the coil as being composed of many transmission line segments in serial connection [8]. For each of these transmission lines, with half of their capacitance terminated both at the beginning and the end of each segment, we put together all of these transmission line segments and include the admittance to ground through the dielectric capacitance and substrate to construct the coil [9]. For further simplification, we convert this coil model into a conventional circuit that matches the coil structure. The circuit conversion is illustrated step by step from Figures 1(a)–1(c). In the literature, one of the ports is commonly taken as ground especially for the analysis of the measured S parameters, which significantly simplifies the analysis [10]. In our case, we produce the final circuit
model using two ports as shown in Figure 1(d). We perform all of our analytical modeling, analytical simulations, and designs based on this final two-port circuit model representation. The standard way of calculating a resonator Q-factor is based on measuring the 3-dB bandwidth ratio of S_{21} magnitude [11], which is different from calculating an inductor Q-factor by measuring reflectivity after grounding one port of the circuit.

To calculate the circuit components for the coil model, we use the equations listed together for convenience in Table 1. These equations relate our structural design parameters to the circuit components of our coil resonator (and thus to the resonator specifications). Our on-chip microwave resonator consists of metal layers (Au) that make up the spiral coil structure and the insulator layers (Si$_3$N$_4$) that isolate the metal layers from each other and the substrate (Si). In our circuit model, L_s is the inductance of the spiral coil; C_{film} is the capacitance of the dielectric thin film between the coil and the substrate; C_{Si} is the capacitance from the coil trace to the substrate for a half turn; C_{sub} is the capacitance between adjacent coil segments; R_{sub} is the resistance of the substrate; and R_S is the resistance of the spiral coil. Additionally, in Table 1, in the inductance Eq. (1), L_{coat} is the self-inductance, M^+ and M^- are the positive and negative mutual inductance, respectively; and in the coil resistance Eq. (6), δ is the skin depth. Moreover, device design parameters used in these equations include the total length of the spiral coil (l), the metal width (w), the separation between metal lines (s), the dielectric thin film thickness (t_{film}), the coil metal thickness (t), the total length and width of the resonator chip (L_C and W_C), and the number of turns (N).

In Table 1, the inductance parameters L_s, L_{coat}, M^+, and M^- are calculated [12]. For calculating C_{Si} and R_{Si}, experimental characterization results are used in the method given in Lee [13]. For R_p and C_p, the relations in Bahl [4] are utilized. We obtain R_p and C_p through the circuit conversion from Figures 1(b) and 1(c). Here R_p and C_p represent the combined impedances of R_{Si}, C_{Si}, and C_{film}. R_p is particularly important for the computation of substrate losses and C_p is significant for the resonance frequency and the self-resonance factor.

Our design guidelines rely on the objective of maximizing Q-factor of our on-chip microwave resonators. Thus, the Q-factor definition is important. The Q-factor of a resonator is defined in the most general sense in Eq. (13) [14]:

$$Q = \frac{\text{energy stored}}{\text{energy loss in one oscillation cycle}}$$ \hspace{1cm} (13)

The empirical form of this Q-factor definition is presented in Eq. (12) in Table 1. However, this equation does not identify the lumped elements that store energy and those that dissipate energy.

Table 1 List of Empirical Equations Used to Calculate Circuit Components from Design Parameters

<table>
<thead>
<tr>
<th>Equation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_s =</td>
<td>L_{\text{coat}}</td>
</tr>
<tr>
<td>$C_{\text{film}} = \frac{\varepsilon_r \varepsilon_0 h}{t_{\text{film}}}$</td>
<td>(2)</td>
</tr>
<tr>
<td>$C_{\text{Si}} = 0.5 \mu h C_{\text{film}}$, where $C_{\text{film}} = 1.6 \times 10^{-10} \frac{F}{cm^2}$</td>
<td>(3)</td>
</tr>
<tr>
<td>$C_{\text{sub}} = \frac{\varepsilon_r \varepsilon_0 t}{s}$</td>
<td>(4)</td>
</tr>
<tr>
<td>$R_{\text{sub}} = \frac{2}{\mu h C_{\text{film}}}$, where $G_{\text{film}} = 0.4 \Omega$</td>
<td>(5)</td>
</tr>
<tr>
<td>$R_S = \frac{\rho l}{w (s - 2 t)}$</td>
<td>(6)</td>
</tr>
<tr>
<td>$\delta = \sqrt{\frac{2 \rho}{\omega \mu \rho}}$, where $\omega = 2\pi f$</td>
<td>(7)</td>
</tr>
<tr>
<td>$R_p = \frac{1}{\omega^2 C_{\text{film}} + C_{\text{Si}}} + \frac{R_{\text{Si}} (C_{\text{Si}} + C_{\text{film}})}{C_{\text{film}}}$</td>
<td>(8)</td>
</tr>
<tr>
<td>$C_p = \frac{C_{\text{film}} + C_{\text{Si}} + C_{\text{film}}}{1 + \omega^2 (C_{\text{Si}} + C_{\text{film}})} R_{\text{Si}}$</td>
<td>(9)</td>
</tr>
<tr>
<td>$Q_{\text{ind}} = \frac{\omega L_s}{R_s} \frac{2 R_p}{1 + \left(\frac{\omega L_s}{R_s}\right)^2}$</td>
<td>(10)</td>
</tr>
<tr>
<td>$f_0 = \frac{1}{2 \pi \sqrt{L_C C_p}}$</td>
<td>(11)</td>
</tr>
<tr>
<td>$Q = \frac{Q_{\text{ind}}}{Q_{\text{res}}}$</td>
<td>(12)</td>
</tr>
</tbody>
</table>

Therefore, it does not provide guidance on how to increase the Q-factor. For that reason, in our design methodology, we utilize the definition of the Q-factor of the inductor (rather than the entire LC tank circuit of the resonator). We can obtain the resonator Q-factor using both the inductor Q-factor (Q_{ind}) and capacitor Q-factor (Q_{cap}) as given in Ludwig and Bretchko [11]:

$$Q_{\text{res}} = \frac{Q_{\text{ind}}}{Q_{\text{cap}}} = \frac{1}{Q_{\text{ind}}} + \frac{1}{Q_{\text{cap}}}$$

Structural design and material selection do not affect Q_{res} very much. However, Q_{cap} is directly affected by geometrical design and the material selection. As a result, we can maximize the resonator Q-factor by using the classical resonance definition and the methods to increase Q_{ind}. The inductor Q-factor is given by Eqs. (14) and (15) [15].

$$Q_{\text{ind}} = 2 \pi \frac{\text{peak magnetic energy} - \text{peak electric energy}}{\text{energy loss in one oscillation cycle}}$$ \hspace{1cm} (14)

$$Q_{\text{ind}} = \frac{R}{\omega L} \left[1 - \left(\frac{\omega}{\omega_p}\right)^2\right]$$ \hspace{1cm} (15)

The open form of this equation is presented in Eq. (10) in Table 1, which explicitly shows the design factors that affect the inductor Q-factor (i.e., the elements that store energy and those that dissipate energy). As shown in Eqs. (14) and (15), Q_{ind} is proportional to the difference between peak magnetic energy and peak electric energy, and the resonance frequency is the one where these two energies are equal, i.e., where the inductor’s Q-factor is zero. This is the point where the tank circuit has the minimum transmitted power. Equation (11) of Table 1 gives the basic definition of the

Figure 1 Our circuit model conversion: We first consider a source driving the conventional circuit of the coil with two ports in (a), then consider one of these ports to be grounded in (b), from which we obtain the common representation of a parallel RLC circuit in (c). Unlike other approaches, here we expand this model further into a simple two-port circuit representation in (d) to be used for all of our analytical simulations.
resonance frequency f_0, which corresponds to the point where Q_{ind} is zero and alternatively to the point where the transmitted power is minimum. When using the numerical or experimental data, we compute the resonance frequency from the point of minimum transmitted power. Because the device we fabricate is an on-chip resonator that does not require any tuning with an external capacitor, we calculate the Q-factor theoretically as given in Eq. (12) of Table 1.

3. EXPERIMENTAL CHARACTERIZATION AND ANALYSIS

We design our devices to have a resonance frequency in the microwave frequency range in accordance with the criterion of maximum feasible Q-factor while maintaining the minimal size for targeted biomedical applications. To maximize the Q-factor of our microwave resonator, we construct our design methodology based on maximizing the inductor’s Q-factor. As discussed in Section 2, Q_{ind} explicitly includes the effect of design parameters on resonance and identifies the energy loss and storage elements. Given these guidelines, we set the device parameters. Table 2 summarizes two of our designs to demonstrate the effect of different design parameters for comparison purposes.

We use silicon as substrate and Au as metal layer as they are biocompatible (so that our resonator can be used as bio-MEMS sensors in future applications). We directly lay down the first metal layer used for contacts directly on the substrate to decrease substrate losses. We choose the Si$_3$N$_4$ thin film, which is also bio-compatible while featuring a low loss tangent (as low as 5×10^{-4}) and a high dielectric constant (as high as 8) in the microwave frequency range. The low loss tangent significantly decreases the loss, whereas the high dielectric constant increases the dielectric film capacitance. To increase the resonance frequency and Q_{ind} and to make a compact resonator, we reduce the resonator chip area; L_C and W_C are thus as short as possible. By increasing the metal width (w), we decrease the sheet resistance and, hence, increase the Q-factor. An increase in the metal width with constant spacing between metal lines (s) increases the lateral area; we thus optimize the metal width and spacing, considering the Q-factor and compactness. The higher the metal spacing is, the lower the resonance frequency is. Generally, although smaller metal spacing increases Q_{ind}, one should also consider the effect of the ratio between w and s. This ratio should not be too large; otherwise, the parasitic capacitance eventually decreases Q_{ind}. The first design with 10 μm spacing features higher Q_{ind} because the w/s ratio of the other device is too large and thus the parasitic capacitance decreases the Q-factor.

In Figure 2, we show Q_{ind} computed for both designs (with $s = 10$ μm and $s = 5$ μm). Here, we observe that the maximum inductor Q-factor of the first design with $s = 10$ μm is higher than that of the second one with $s = 5$ μm. At resonance frequencies, their inductor Q-factors cross the zero line; the first design with $s = 10$ μm has a resonance frequency of 6.70 GHz, and the second design with $s = 5$ μm has a resonance frequency of 7.00 GHz.

High-Q factor in our designs is achieved because we use the capacitance of the dielectric thin film between the coil and the substrate for on-chip tuning and obtain an all on-chip, small-size microwave resonator. In fact, because we use the high dielectric capacitor instead of an external capacitor, the spiral inductor is utilized the way that a cavity resonator would be. Thus, we obtain a high Q-factor, comparable to the results of cavity resonator studies, but here without sacrificing the small chip area. Therefore, this study effectively combines two different approaches: The spiral inductor concept and cavity resonator design techniques. In addition, considering the factors that reduce the losses and enhance the Q-factor by a careful inspection each of the circuit parameters in Figure 1(a), the losses are minimized and the Q-factor is maximized at a resonance frequency of 7 GHz. Also, if we further modify our resonator design to operate at even higher frequencies, the chip size becomes smaller and the Q-factor is enhanced because of our design methodology, which is again different from the traditional approaches.

The first step in the fabrication procedure includes standard lithography and liftoff directly on a Si substrate to lay down the first metal layer made of Au with a thickness of 0.1 μm. We then deposit a Si$_3$N$_4$ thin film using a plasma-enhanced chemical vapor deposition (PECVD) system; this film is 0.1 μm thick. To pattern the Si$_3$N$_4$ film, we perform a second lithography to open vertical interconnection areas using a wet etching process with HF (hydrofluoric acid). In the subsequent Au metallization step, we erect the interconnection layer. In the third lithography and Au metallization steps, we construct the top coil and contact pads and finally obtain our on-chip microwave resonator. Figure 4 summarizes our process flow to fabricate our devices and shows one of the fabricated devices. We characterize these fabricated devices using a vector network analyzer (HP8510C). We calibrate our setup using

![Figure 2](Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com)

![Figure 3](The process flow for the microfabrication of our on-chip microwave resonators shown in cross-sectional view at the stages of (a) metallization on the substrate, (b) dielectric film coating, (c) film patterning (wet etching), (d) interconnect metallization, and (e) final top coil metallization, along with (f) a top-view micrograph of our fabricated device. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com]

Table 2: Our Device Design Parameters

<table>
<thead>
<tr>
<th>Design</th>
<th>L_C (μm)</th>
<th>W_C (μm)</th>
<th>N</th>
<th>w (μm)</th>
<th>s (μm)</th>
<th>t_{film} (μm)</th>
<th>t (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>540</td>
<td>540</td>
<td>2</td>
<td>100</td>
<td>10</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>520</td>
<td>520</td>
<td>2</td>
<td>100</td>
<td>5</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

the ISS (impedance standard substrate). In our measurements, we take 801 points and perform 128-point averaging both in calibration and measurement.

Figures 4 and 5 show the S_{21} parameters (in dB) that are experimentally measured and numerically simulated (in CST Microwave Studio) together for our first and second designs ($s = 10$ μm and 5 μm), respectively. We measure the Q-factors of the microwave resonators from the 3-dB bandwidth ratio of the S_{21} magnitude by taking transmission measurements [11]. Therefore, we obtain the loaded Q-factor including the external effects, which is different from calculating the Q-factor of an inductor alone by measuring reflectivity after grounding one port of the circuit. We observe sharp dips in the transmitted power at the resonance frequencies both in Figures 4(a) and 5(a). We measure the resonance frequencies (where S_{21} is minimum) to be 6.97 and 7.12 GHz for our first and second designs, respectively. These experimental results match very well with the theoretical values of 6.70 and 7.00 GHz. Our theoretical and experimental results are summarized in Table 3.

To clearly illustrate 3-dB bandwidth measurements, Figures 4(b) and 5(b) depict the same experimental S_{21} data presented in Figures 4(a) and 5(a), zooming in the resonance regions. As can be clearly seen in Figures 4(b) and 5(b), we measure Δf of the first and second devices to be 148 and 178 MHz; these closely match the numerically calculated Δf values of 128 and 169 MHz, respectively. Using Eq. (12), we then experimentally obtain Q-factors for the first and second devices of 47.10 and 38.48; these are also in close agreement with the numerical results of 52.40 and 41.30, presented in Table 3.

Here, it is worth noting that we take all of our measurements loaded with standard microwave probes on the chips and then extract the Q-factors from these measurements in the loaded case including the losses coming from the probes. For example, for cavity resonators [5, 6], typically unloaded Q-factors are cited; these are calculated using the relation $\frac{1}{Q_u} = \frac{1}{Q_l} + \frac{1}{Q_e}$, where Q_u is the unloaded Q-factor, Q_l is the loaded Q-factor, and Q_e is the external Q-factor. In these works, Q_u and Q_e are larger than Q_l. In our case, we obtain and cite only the loaded Q-factors (Q_l) in our experiments by placing the microwave probes on the chips and measuring the S_{21} parameters with the probes. In our experimental characterization, the minimum point of this S_{21} measurement gives the resonance frequency f_0; the points that are 3 dB above this minimum point give the 3-dB frequencies (f_1 and f_2); the difference between f_1 and f_2 gives the 3-dB bandwidth Δf; and finally the ratio of f_0 to Δf gives the loaded Q-factor as in Eq. (12), which is also explicitly shown on the plots of Figures 4(b) and 5(b).

| TABLE 3 Theoretical and Experimental Resonance Frequencies, 3-dB Bandwidths, and Quality-Factors of Our Devices |
|---|-----------------|-----------------|---------------|
| f_0 (GHz) | Δf (MHz) | Q-factor |
| Theory | Experiment | Theory | Experiment | Theory | Experiment |
| Device 1 | 6.70 | 6.97 | 128 | 148 | 52.40 | 47.10 |
| Device 2 | 7.00 | 7.12 | 169 | 178 | 41.30 | 38.48 |
Therefore, the Q-factors cited here present the worst case with probe loading (and thus related losses) included in the measurements and extraction of the Q-factors.

Using our new design approach, we also increase the Q-factor by decreasing the device size and increasing the resonance frequency as also stated in Eq. (10). However, with the conventional design techniques, the Q-factor would rather decrease with increasing frequencies. In our experimental study, after achieving a considerably high Q-factor at 7 GHz using a small footprint of 540 μm \times 540 μm, we further modify our design for $L_C = 270 \, \mu$m, $W_C = 270 \, \mu$m, $N = 2$, $w = 50 \, \mu$m, $s = 5 \, \mu$m, $t_{\text{film}} = 0.1 \, \mu$m, and $t = 0.1 \, \mu$m. We use our analytical model to predict the operating resonance frequencies, and we find out that the Q-factor is further improved despite the smaller chip size, while the resonance frequency is increased (13.08 GHz), as shown in Figure 6. This is a unique feature of our self-tuning design methodology, which is not possible with the traditional approaches.

The loaded Q-factors experimentally obtained with our all-on-chip microwave resonator using our new design methodology in this work are considerably larger than the current state-of-the-art for similar-size microwave resonators that are implemented without cavity geometries in traditional approaches. The excellent agreement between our experimental measurement results and theoretical simulation results (both analytical and numerical) verifies our theoretical models and techniques.

4. CONCLUSIONS

We have designed, fabricated, and demonstrated 540 μm \times 540 μm on-chip microwave resonators working at 6.97 GHz with a Q-factor of 47.10. These hold great promise for use as high-Q chip-scale microwave resonators in different high-frequency applications, e.g., in implant RF sensors. To achieve high Q-factors, our design methodology focused on tuning the on-chip coil inductance with the increased on-chip dielectric thin film capacitance and minimizing energy losses. Also, we developed a two-port coil model representation, which we verified with our experimental results and numerical simulations. This model allows us to design and implement all-on-chip resonators whose resonance frequencies and Q-factors are precisely set and controlled with the device parameters in the design phase. As an interesting feature in our design approach, the effect of skin depth on the Q-factor is relatively reduced. Additionally, if our resonator design is modified to operate at an increased frequency, the chip size becomes smaller and the Q-factor is enhanced, which is again a different feature from the traditional approaches. Here in this study, the well-known spiral geometry, which is commonly utilized in inductors, is implemented as an all-on-chip microwave resonator for the first time.

ACKNOWLEDGMENTS

This work is supported by the European Science Foundation (ESF) European Young Investigator Award (EURYI) and the Turkish National Academy of Sciences (TÜBA) Distinguished Young Scientist Award (GEZIP), and TÜBİTAK EEEAG 105E066, 105E065, 104E114, 106E020, 107E088, and 107E297, and EU IRG MOON 021391. The authors are pleased to acknowledge Dr. N. Kosku Perkgoz, Dr. Z. Dilli, A. Kocabac, and D. Caliçkan for useful editing, discussions, experimental training, and support.

REFERENCES

Figure 6 Q-factor computed for our design with $L_C = 270 \, \mu$m. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com]